Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles
نویسندگان
چکیده
Most earth-abundant electrocatalysts suffer from negligible activity for the hydrogen oxidation reaction (HOR) and significant overpotentials for the hydrogen evolution reaction (HER) in acidic media. We designed earth-abundant, carbon-supported titanium tungsten carbide (TixW1 xC) nanoparticles decorated with surface Pt coatings ranging from the ‘‘single-atom’’ to the two-monolayer regime. Reactivity studies demonstrated that sub-monolayer Pt coverages are optimal and could activate the exposed metal carbide sites for both HER and HOR at low overpotentials. Specifically, a 0.25 monolayer coverage of Pt improved the exchange current density of Ti0.2W0.8C by more than three orders of magnitude. This catalyst outperformed traditional Pt/C by a factor of 13 on a Pt mass basis, allowing for over a 96% reduction in Pt loadings. Deactivation was not observed after 10000 cycles between 50 and +600 mV vs. RHE in 1.0 M HClO4, and activity was maintained after 140000 catalytic turnovers. A technoeconomic analysis revealed that over the catalyst lifetime, this new architecture could reduce materials and energy costs by a factor of 6 compared to state-of-the-art earth-abundant catalysts and a factor of 12 compared to Pt/C.
منابع مشابه
Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.
Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C(3)N(4) (mpg-C(3)N(4)) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments th...
متن کاملCarbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.
The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient ...
متن کاملN-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction
Development of effective technologies for clean and sustainable hydrogen energy has attracted great attention recently, as hydrogen is hailed as a promising energy source to reduce our dependence on fossil fuels and benet the environment by reducing the emissions of greenhouse and other toxic gases. To this end, an effective and promising approach is based on the electrolysis of water for hydr...
متن کاملEnhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.
Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen e...
متن کاملMethanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.
In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016